

ketones 2b-e in good yields as shown in Table I. Although photolysis of 1f also gave the thicketone 2f in 43% yield, this compound was unstable and decomposed gradually even at room temperature. The photoreaction of 1g was much slower than that of other monothic (1a-f), and prolonged irradiation gave an intractable mixture.

The formation of the thicketones 2 is reasonably explained in terms of ring opening of an aziridine (3), which is produced by cyclization of 1 (Scheme I). The intermediacy of 3 was confirmed by the following experiments. Irradiation of 1c in toluene at -78 °C resulted in the loss of the red thioimide color. On warming to room temperature, the colorless solution turned purple and 2c was obtained as a main product. This finding indicated the presence of an intermediate that did not possess a thiobenzoyl moiety. When the colorless solution obtained in the low-temperature photolysis was treated with acetyl chloride in the presence of triethylamine at -78 °C, 2,3diphenyl-2-(acetylthio)-1-benzoyl-3-methylaziridine (4c, 85%) was obtained, accompanied by a small amount of 2c(9%). The structure of 4b was assigned on the basis of elemental analysis and spectral data. The IR spectrum (KBr) exhibited carbonyl frequencies at 1705 and 1660 cm⁻¹. The ¹H NMR spectrum (CDCl₃) showed signals at δ 1.14 (s, 3 H, CH₃), 2.01 (s, 3 H, C(=O)CH₃), 7.3-7.8 (m, 13 H, Ph), and 8.1-8.2 (m, 2 H, Ph), and ${}^{13}C$ NMR exhibited resonances at 26.3 (q), 31.3 (q), 80.6 (s), 104.7 (s), 126.6 (d), 127.7 (d), 128.0 (d), 128.5 (d), 128.6 (d), 131.9 (s), 139.0 (s), 140.9 (s), 161.6 (s), and 191.8 (s) ppm. The mass spectrum showed molecular ion at m/z 387 (M⁺) and fragment peaks at m/e 312 [M – SC(=O)Me], and 207 [M -SC(=0)Me - PhC(=0)]. Furthermore, the fact that the base-catalyzed methanolysis (MeOH-NEt₃) of 4b gives 2b almost quantitatively is also consistent with the mechanism shown in Scheme I.

 β -Hydrogen abstraction appears to be very rare occurrance in carbonyl photochemitry, giving precedence to the Norrish type II, intermolecular hydrogen abstraction or simply other photochemical reactions.⁶ Although a few instances of β -hydrogen abstraction of thioketones have been reported,^{1e,f} they are limited to thiones where only β -hydrogens are abstractable or β -hydrogens are strongly activated by substituents. The present photorearrangement involving unprecedented 1,2-thiobenzoyl shift also provides the first example of β -hydrogen abstraction of thioimides. **Registry No.** 1a, 89873-85-8; 1b, 89873-86-9; 1c, 89873-87-0; 1d, 89873-88-1; 1e, 89873-89-2; 1f, 49590-28-5; 1g, 89873-90-5; 2a, 89873-91-6; 2b, 89873-92-7; 2c, 89873-93-8; 2d, 89873-94-9; 2e, 89873-95-0; 2f, 89873-96-1; 4a, 89873-98-3; 4b, 89873-99-4; 4c, 89873-97-2; 4d, 89874-00-0; 4e, 89874-01-1; 4f, 89874-02-2; hydrogen, 1333-74-0.

Supplementary Material Available: Experimental procedures and spectral data of starting materials and photoproducts are described (2 pages). Ordering information is given on any current masthead page.

Masami Sakamoto, Hiromu Aoyama* Yoshimori Omote

Department of Chemistry, The University of Tsukuba Sakura-mura, Ibaraki, 305 Japan Received December 27, 1983

Regiospecific Alkylation on Allylic Halides with Latent γ -Functionality

Summary: Completely regiospecific alkylation on stereospecifically γ -silylated allylic bromides was achieved with a variety of anionic nucleophiles of a wide range of strength.

Sir: Advantageous aspects of using electrophilic allylic reactants in organic synthesis can never be underestimated because they are more reactive than the corresponding saturated analogues, and their obvious precursors, the corresponding allylic alcohols, can be prepared stereospecially.¹ But development of allylation reactions possessing high regio- and stereoselectivities has been a long-standing problem in organic chemistry, mainly because of the preponderant S_N2' , reactions especially with strong nucleophiles (eq 1), and numerous attempts to control the site of reaction have been made.¹

$$\begin{array}{c} R \\ H \\ H \\ \underline{1} \\ \underline{1} \\ \underline{1} \\ \underline{2} \\ \underline{3} \end{array}$$

Herein is reported a solution for this problem in which by placing a sterically demanding proton equivalent on the γ -position of the allylic halide 1 or the corresponding stereoisomer, the unwanted reaction at γ -position (S_N2') is curtailed. Additionally, if the allylic reactants would be available and the proton equivalent is removed (or replaced by other functionality), both stereospecifically, this method would render a general synthesis of alkenes. To this end, a trialkylsilyl group would be a perfect choice for the requirements.²

Consequently, a number of stereospecifically 3-trimethylsilylated allylic alcohols 4 and 5 were prepared^{3,4}

1838

^{(6) (}a) Padwa, A.; Gruber, R. J. Am. Chem. Soc. 1970, 92, 107. (b) Padwa, A.; Eisenhardt, W. Ibid. 1971, 93, 1400. (c) Cormier, R. A.; Schreiber, W. L.; Agosta, W. C. J. Chem. Soc., Chem. Commun. 1972, 729. (d) Scheffer, J. R.; Bhandari, K. S.; Gaylar, R. E., J. Am. Chem. Soc. 1975, 97, 2178.

^{(1) (}a) Magid, R. M. Tetrahedron, 1980, 36, 1901. (b) Calo, V.; Lopez, L.; Pesce, G.; Calianno, A. J. Org. Chem. 1982, 47, 4482. (c) Goering, H. L.; Kantner, S. S.; Tseng, C. C. Ibid. 1983, 48, 715.

Yannishi, S. S., Pesne, G. Stott, 1994, 1994, 59, 115.
For reviews of organosilicon chemistry, see: Colvin, E. W. Chem. Soc. Rev. 1978, 7, 15. "Silicon in Organic Synthesis"; Butterworth: London, 1981. Paquette, L. A. Science (Washington, D.C.) 1982, 217, 1793. Chan, T. H. Acc. Chem. Res. 1977, 10, 442. Chan, T. H.; Fleming, I. Synthesis 1979, 761. Weber, W. P. "Silicon Reagents for Organic Synthesis"; Springer-Verlag: Berlin, 1983.
(3) 3(E)-(Trimethylsilyl)allylic alcohols 4 were prepared by either of

^{(3) 3(}E)-(Trimethylsilyl)allylic alcohols 4 were prepared by either of the following methods. (a) Titanocene dichloride catalyzed syn-hydromagnesiation of propargylic alcohols (Sato, F.; Ishikawa, H.; Watanabe, H.; Miyake, T.; Sato, M. J. Chem. Soc., Chem. Commun. 1981, 718), followed by trimethylsilylation with trimethylsilyl chloride in the presence of HMPT. (b) Hydroalumination (LiAlH₄-NaOMe)-iodination of 3-(trimethylsilyl)-2-propyn-1-ol, followed by cuprate reaction on the 3-(E)-iodoallylic alcohols (Corey, E. J.; Katzenellenbogen, J. A.; Gilman, N. W.; Roman, S. A.; Erickson, B. W. J. Am. Chem. Soc. 1968, 90, 5618).

Communications

Table I. Reactions of 3-(Trimethylsilyl)allylic Bromides with Nucleophiles ^a				
entry	starting material (R)	reaction condition	product ^b (yield, %)	
1	6 (n-Bu)	NaCH(CO ₂ Et) ₂ (1.2 equiv) 0→23 °C (3 h), THF	Me ₃ Si CH(CO ₂ Et) ₂	(60)
2	7 (<i>n</i> -Bu)		Me ₃ Si	(79)
3	6 (n-Bu)	C^{h} (10) (1.5 equiv) −15→23 °C N _{Li} (3 h), THF	9 /Bu Me ₃ Si	(86) ^c
4	6 $(n - C_6 H_{13})$	$Li_2(n-C_5H_{11}C=C)_2CuCN$ (12) (1.0 equiv), 0 °C (0.5 h), THF	Me ₃ Si	(85)
5	6 (<i>n</i> -Bu)	LiCu(<i>n</i> -Bu)₂ (2.2 equiv), -78→-40 °C (2 h), ether		(100)
6	7 (<i>n</i> -Bu)		14 //-Bu Me ₃ Si	(100)
7	6 $(n - C_{e}H_{13})$	sec-BuCu (3.0 equiv), -78→-40 °C (2 h), ether	15 ^{n-C} 6H ₁₃ Me ₃ Si 10	(100)
8	6 $(n \cdot C_6 H_{13})$	t-BuCu (2.0 equiv), -78→-40 °C (2 h), ether	10 ^{7-C6H13} Me3Si 17	(100)
9	6 (n-Bu)	LiCuPh₂ (2.5 equiv), -78→-0 °C (3 h), ether	Me ₃ Si	(76)
10	7 (n-Bu)		18 /-Bu Me ₃ Si	(85)
			19	

^a All reactions were carried out (0.1-0.3 M concentration) under rigorous exclusion of moisture and oxygen. Reaction was monitored by TLC, and, when complete, extractive workup was performed in the usual way. ^b The product was isolated pure by chromatography on silica gel and fully substantiated by spectral data. ^c After hydrolysis in 4% aqueous oxalic acid (23°C, 1 h).

and subsequently converted to the corresponding bromides 6 and 7.5

The allylic bromides 6 and 7 were individually subjected to displacement reactions with various nucleophiles. Some representative results, which are summarized in Table I, fulfill our expectation with complete regiospecificity. Moreover, the stereochemistry of the allylic bromides was fully conserved in the alkylation products, which vividly testifies to the subtle influence of the silvl group.^{6,7}

It should be noted that there were in fact some interesting observations in the aforementioned reactions. Lithium enolates reacted smoothly to form monoalkylated products,⁶ but by far the cleanest alkylation could be conducted with metalloenamine derivatives (entry 3, Table I). Also, the mixed cuprate 12⁸ (entry 4, Table I) provided cleanly the skipped envne 13 whereas the reaction with the corresponding lithium acetylide in a THF-HMPA mixed solvent⁹ gave considerable amounts of the corresponding ene-allene in this example.

Far more interesting results were obtained in the reactions with organocopper reagents. Thus, reactions of the allylic bromides with lithium di-n-butylcuprate afforded

⁽⁴⁾ 3(Z)-(Trimethylsilyl)allylic alcohols 5 were prepared by Wurtz-type silylation (sodium dispersion, Me₃SiCl, toluene, reflux) of trimethylsilyl ether of 3(Z)-iodoallylic alcohols, which was available from the aforementioned hydroalumination-iodination of propargylic alcohols. For a similar approach, see ref 6. Another method, although more laborious, was found to work equally well, see: Miller, R. B.; Al-Hassan, M. I. Tetrahedron Lett. 1983, 24, 2055.

⁽⁵⁾ The bromides 6 and 7 were prepared in more than 90% yields from the corresponding alcohols by modification of the existing method (1.5 equiv of CBr₄, 1.7 equiv of Ph₃P, 1 equiv of 2,6-lutidine, CH₂Cl₂, 23 °C, 2-3 h). Kocienski, P. J.; Cernigliaro, G.; Feldstein, G. J. Org. Chem. 1977, 42, 353.

 ⁽⁶⁾ Stork, G.; Jung, M. E.; Noel, Y. J. Am. Chem. Soc. 1974, 96, 3684.
(7) Cf. Goering, H. L.; Kantner, S. S. J. Org. Chem. 1983, 48, 721 and references therein.

⁽⁸⁾ For applications of analogous reagents, see: Lipshutz, B. H.; Kozlowski, J. A.; Wilhelm, R. S. J. Org. Chem. 1983, 48, 546 and references therein.

⁽⁹⁾ Schill, G.; Keller, U. Synthesis 1972, 621.

Table II. Reactions of 3-(Trimethylsilyl)allylic Bromides with Alkylcopper Reagents^a

^a Reactions were done under the identical conditions (with those in Table I). ^b The products were isolated pure by chromatography unless otherwise noted. ^c Determined by NMR.

straightforwardly $S_N 2$ products (entries 5 and 6, Table I), while, irrespective of stereochemistries of allylic bromides, the corresponding reactions with either n-butylcopper or *n*-BuCu·BF₃¹⁰ provided exclusively same $S_N^{2'}$ product, 21 (Table II). This is, to our knowledge, the first instance where clear and sharp distinction of reaction paths exists between reactions of dialkylcuprates and alkylcoppers (eq 2).

Unfortunately, though, the difference faded gradually as the alkyl groups on copper became larger (Table II). Thus, with sec- or tert-butyl groups, even the corresponding alkylcopper reagents were effective for S_N2 reactions, but with n-butyl or phenyl groups, use of cuprate reagents was necessary for S_N2 product formation (Table I).

In conclusion, γ -(trimethylsilyl)allylic bromides are superb substrates for regiospecific $S_N 2$ functionalization and the resulting stereodefined alkenylsilanes are valuable synthetic intermediates convertible to a number of functional groups of variable oxidation states^{2,11} (eq 3).

(10) Maruyama, K.; Yamamoto, Y. J. Am. Chem. Soc. 1977, 99, 8068. (11) (a) Hudrlik, P. F.; Peterson, D.; Rona, R. J. J. Org. Chem. 1975, 40, 2263. Hudrlik, P. F.; Hudrlik, A. M.; Rona, R. J.; Misra, R. N.; Withers, G. P. J. Am. Chem. Soc. 1977, 99, 1993. (b) Hirao, T.; Yamada, N.; Ohshiro, Y.; Agawa, T. Chem. Lett. 1982, 1977.

Acknowledgment. Financial support from the Korean Science and Engineering Foundation and experimental assistance by Ms. Seung Hee Hann are gratefully appreciated.

Registry No. 6 (R = n-Bu), 89828-12-6; 6 (R = n-C₆H₁₃), 89828-13-7; 7 (R = n-Bu), 89828-14-8; 8, 89828-15-9; 9, 89828-16-0; 10, 89828-17-1; 11, 89828-18-2; 12, 89828-11-5; 13, 89828-19-3; 14, 89828-20-6; 15, 89828-21-7; 16, 89828-22-8; 17, 89828-23-9; 18, 89828-24-0; 19, 89828-25-1; 20 (R = sec-Bu), 89828-26-2; 20 (R = t-Bu), 89828-27-3; 21 (R = n-Bu), 89828-28-4; 21 (R = Ph), 89828-29-5; NaCH(CO2Et)2, 34727-00-9; LiCu(n-Bu)2, 24406-16-4; sec-BuCu, 89828-30-8; t-BuCu, 56583-96-1; LiCuPh₂, 23402-69-9; n-BuCu, 34948-25-9; n-BuCu·BF₃, 68079-35-6; PhCu, 3220-49-3.

Jahyo Kang,* Wonoh Cho, Won Koo Lee

Department of Chemistry, Sogang University Mapoku, Seoul 121, Korea Received January 3, 1984

Macrolide Synthesis via Dichloroketene Ring Expansion

Summary: The reaction of allyl sulfides with dichloroketene followed by [3,3] sigmatropic rearrangement has been adapted for the efficient ring expansion of α -alkenyl cyclic sulfides.

Sir: Belluš and Malherbe have described a remarkable [3,3] sigmatropic rearrangement of allyl ethers or sulfides upon treatment with dichloroketene:¹

It occurred to us that this reaction should also be applicable to the synthesis of medium or large ring thiolactones from cyclic α -alkenyl sulfides that are available by sulfur ylide ring expansion techniques.² In particular, we were interested in potential applications where the rearranged product would contain an ω -hydroxyalkyl substituent because thiolactones of this type have been shown to rearrange to seven-ten-membered mercapto lactones by S to O acyl transfer.³ The key steps correspond to Scheme I, 3 to 4 (dichloroketene ring expansion) and 5 to 6 (S to O acyl transfer). After our work was well under way, Belluš et al. published an apparently close analogy to the desired [3,3] sigmatropic ring expansion, the conversion of 1 into 2, but in a disappointing yield of 8%.⁴ Although we have not repeated this specific example, our results suggest that a modified dichloroketene ring expansion procedure (reflux during slow addition of excess Cl₃CCOCl) gives consistently good yields. The method has been used to prepare ω -hydroxyalkyl thiolactones 5 and 12, which provide convenient access to 11- and 14-membered lactones, respectively, by S to O acyl transfer.

The starting material 3 for both lactone series was available from previous work.⁵ Treatment of 3 with $Cl_2C=C=O$, generated in situ by syringe pump addition

Malherbe, R., Belluš, D. Helv. Chim. Acta 1978, 61, 3096.
(2) (a) Vedejs, E.; Hagen, J. P.; Roach, B. L.; Spear, K. L. J. Org. Chem. 1978, 43, 1185. (b) Vedejs, E.; Arco, M. J.; Powell, D. W.; Renga, J. M.; Singer, S. P. Ibid. 1978, 43, 4831. (c) Vedejs, E.; Dophin, J. M.; Mastalerz, H. J. Am. Chem. Soc. 1983, 105, 127.
(3) Vedejs, E.; Powell, D. W. J. Am. Chem. Soc. 1982, 104, 2046.
(4) Malherbe, R.; Rist, G.; Belluš, D. J. Org. Chem. 1983, 48, 860.
(5) Vedejs, E.; Arnost, M. J.; Hagen, J. P. J. Org. Chem. 1979, 44, 3230.